
glu
deployment automation platform

Yan Pujante
in: http://www.linkedin.com/in/yan
blog: http://pongasoft.com/blog/yan
 @yanpujante

July 2011

* To see a video of this presentation given at Chicago devops, check this link:
http://devops.com/2011/07/09/glu-deployment-automation-video/

Monday, July 11, 2011

http://www.linkedin.com/in/yan
http://www.linkedin.com/in/yan
http://pongasoft.com/blog/yan
http://pongasoft.com/blog/yan
http://devops.com/2011/07/09/glu-deployment-automation-video/
http://devops.com/2011/07/09/glu-deployment-automation-video/

Video

• to see a video of this presentation given at Chicago
devops, check this link:

http://devops.com/2011/07/09/glu-deployment-automation-video/

Monday, July 11, 2011

http://devops.com/2011/07/09/glu-deployment-automation-video/
http://devops.com/2011/07/09/glu-deployment-automation-video/

A little bit about me...
• Software engineer (16 years experience)

• Software is my passion (28 years! TI-99/4A)

• Currently not working... for a boss... :)

• glu, kiwidoc (www.kiwidoc.com)

• Worked @ LinkedIn for 8 years (founding team!)

• Worked on a lot of infrastructure projects and early
features (security, payment, graph, etc...)

• Last (big) project was glu (main author/contributor/
maintainer)

Monday, July 11, 2011

http://www.kiwidoc.com
http://www.kiwidoc.com

Why glu ?

Monday, July 11, 2011

Before glu... :ʼ(

Monday, July 11, 2011

Before glu...

• Operations performs manual deployment:

• ssh, rcp, etc...

• non shared manually edited scripts

➡ extremely time-consuming

➡ error prone

Monday, July 11, 2011

glu project
• Address operations pain points

• Deploy (and monitor) applications to an arbitrary
large set of nodes:

• efficiently
• with minimum/no human interaction
• securely
• in a reproducible manner

• ensure consistency over time (prevent drifting)

• detect and troubleshoot quickly when problems arise

Monday, July 11, 2011

After...

Click me!

Monday, July 11, 2011

After... :)

Nothing to do here...
Sit back and enjoy!

Monday, July 11, 2011

After... :D

Monday, July 11, 2011

History of glu

July
2009

March
2010

July
2010

November
2010

June
2011

July
2011

glu project
started

limited
rollout to

production

100%
rollout

glu open
source

latest
release

3.0.0

Orbitz tech
Talk

September
2011

glu ? :)

Monday, July 11, 2011

Rollout to production

• glu project started in July 2009

• Initial rollout to LinkedIn production in March 2010

• Gradual until full rollout in July 2010

• As of June 2011 LinkedIn glu numbers:

• 5 different ‘fabrics’ (2 prod + 2 stg + 1 int. lab)

• ~2650 nodes, ~9000 instances, ~300 services

• LinkedIn working on ‘glu on the desktop’ (dev)

Monday, July 11, 2011

glu open source

• Before I left LinkedIn, open sourced glu (~3 months
effort)

• 1.0.0 released in November 2010

• 2.0.0 released in February 2011 (tagging)

• 3.0.0 released in June 2011 (parent/child)

• (~ 20 releases total... smaller releases)

Monday, July 11, 2011

glu interest

• since 11/2010, glu has generated a lot of interest

• oubrain.com is using glu (integrated in CI!)

• companies interested in glu: Orbitz, Netflix,
GigaSpaces, Rearden Commerce, etc...

• some academic use (Budapest university)

• a lot of ‘followers’ on github

• lots of downloads

Monday, July 11, 2011

Architecture

Monday, July 11, 2011

Components/Concepts

• 3 physical components

Agent

A Zoo
Keeper

glu orchestration
engine

• 3 concepts

Static Model Live Model
Script

S

Monday, July 11, 2011

ZooKeeper

• 1 ZooKeeper cluster (3 or 5 instances enough)

• ZooKeeper is an Apache project

• similar to a (networked) filesystem (think nfs)

• + ‘directories’ can also contain data

• + ephemeral nodes

• + powerful watcher concept => notifications

• ZooKeeper is used to maintain the state of the system

Zoo
Keeper

Monday, July 11, 2011

glu Agent
• 1 agent per node => as many agents as there are

nodes

• agent is active process (groovy)

• (secure) REST API

• Reports its state to ZooKeeper

Agent

A

Monday, July 11, 2011

glu orchestration engine

• 1 orchestration engine

• runs inside a webapp

• offers both browser and REST interface

• Listens to ZooKeeper events (to compute ‘live state’)

• Talks to the agents

Monday, July 11, 2011

Static/Live Model

• model is a json document which describes

• where to deploy

• what and how to deploy

• “Static” is what you want

• “Live” is what is actually deployed/running

Static Model Live Model

Monday, July 11, 2011

Static Model: Where ?

• “agent” => node which runs this agent

• “mountPoint” => unique key

• can deploy more than 1 ‘thing’ per agent

{

 "fabric": "prod-chicago",

 "entries": [{

 "agent": "node01.prod",

 "mountPoint": "/search/i001",

 "script": "http://repository.prod/scripts/webapp-deploy-1.0.0.groovy",

 "initParameters": {

 "container": {

 "skeleton": "http://repository.prod/tgzs/jetty-7.2.2.v20101205.tgz",

 "port": 8080,

 },

 "webapp": {

 "war": "http://repository.prod/wars/search-2.1.0.war",

 "contextPath": "/"

 }}}]}

Monday, July 11, 2011

Static Model: What / How ?

• “script” => instructions about what ‘deploy’ means

• “initParameters” => parameters provided to the script

{

 "fabric": "prod-chicago",

 "entries": [{

 "agent": "node01.prod",

 "mountPoint": "/search/i001",

 "script": "http://repository.prod/scripts/webapp-deploy-1.0.0.groovy",

 "initParameters": {

 "container": {

 "skeleton": "http://repository.prod/tgzs/jetty-7.2.2.v20101205.tgz",

 "port": 8080,

 },

 "webapp": {

 "war": "http://repository.prod/wars/search-2.1.0.war",

 "contextPath": "/"

 }}}]}

Monday, July 11, 2011

glu Script

• groovy class which defines

• a set of ‘phases’ (install, start, etc...) backed by a
state machine

• properties (exported to ZooKeeper)

• glu does not dictate what goes in each ‘phase’

Script

S

Monday, July 11, 2011

glu Script runtime

• glu Script code runs inside the (java) VM of the agent

• in general, a glu Script will spawn external processes
(ex: webapp container, memcached, etc...) but it is
not a requirement!

Node / OS

Agent / Java VM

ProcessProcess

ProcessProcess

Monday, July 11, 2011

How does it all work ?

Monday, July 11, 2011

Live Model

• each agent reports its
state to ZooKeeper

• the orchestration engine
listens to ZooKeeper and
builds the ‘live’ model

Live Model

Monday, July 11, 2011

Static Model

• the ‘static’ model is
loaded in the
orchestration engine

Static Model

Monday, July 11, 2011

Delta Computation

• orchestration engine computes a delta by comparing
the static model and the live model

• “desired” state vs “current” state

Delta Srvc

δ
Static Model

Live Model

δ

δ

Monday, July 11, 2011

deployment plan

• delta is used to compute
a deployment plan

• orchestration engine
sends commands (REST)
to the appropriate agents

Monday, July 11, 2011

Live Model updated

• as the agents run the
commands they update
their state in ZooKeeper

Monday, July 11, 2011

System Stable

• The live model and the
static model match

• => no more delta

Monday, July 11, 2011

System Stable (no delta)

• remains stable until:

• static model changes (ex:
new version of software)

• live model changes (ex:
hardware crash)

Delta Srvc

δ
Static Model

δ

Live Model

Monday, July 11, 2011

Static Model Changes

• Static model changes

• ex: new version of software, new node, etc...

• => delta => deploy/upgrade software, provision new
nodes

Delta Srvc

δ
δ

Static ModelLive Model

Monday, July 11, 2011

Live Model Changes

• Live Model changes

• ex: hardware crash, bad behavior, high load, etc...

• => delta => monitoring!

Delta Srvc

δ
Static Model

Live Model

δ

Monday, July 11, 2011

Monitoring: built-in

• agent registers a ZooKeeper ephemeral node

• => when agent disappears, state changes!

Delta Srvc

δ
Static Model

Live Model

δ
Zoo

Keeper

Monday, July 11, 2011

Monitoring: add-on

• script runs in “active”
agent

• agent has “timer”
capability

• =>script can also
monitor what it starts
and change state
when failure detected

Delta Srvc

δ
Static Model

Live Model

δ
Zoo

Keeper

Node / OS

Agent / Java VM

Proce
ss

Proce
ss

Proce
ss

Proce
ss

Monday, July 11, 2011

Monitoring: advanced

• You can even build a full monitoring solution on top
of glu

• Not enough time/space here :)

• Check out my blog (source examples included!) @
http://www.pongasoft.com/blog/yan/categories/glu/

Monday, July 11, 2011

http://www.pongasoft.com/blog/yan/categories/glu/
http://www.pongasoft.com/blog/yan/categories/glu/

What about security ?

Monday, July 11, 2011

Security

• User must authenticate (LDAP and/or glu)

• Agent REST API is ‘protected’ behind HTTPS with
client auth

• Every ‘change’ is audited in the audit log

REST API

Agent

A

R
ES

T
A

PI

LDAP / glu

H
TT

PS
 (c

lie
nt

)

audit log

Monday, July 11, 2011

Live Demo...

* You can see the live demo in the presentation given at Chicago devops (starts around 27:00):
http://devops.com/2011/07/09/glu-deployment-automation-video/

Monday, July 11, 2011

http://devops.com/2011/07/09/glu-deployment-automation-video/
http://devops.com/2011/07/09/glu-deployment-automation-video/

glu as a platform

Monday, July 11, 2011

glu is more than a tool

• glu is a tool with a lot of customization points

• it is also a platform on top of which you can build
your own deployment (and optionally monitoring)
solution

Monday, July 11, 2011

APIs

• Agent CLI and Console CLI are mostly wrappers/
examples around the REST API

• => you can use the REST API directly or use the CLI

Agent

A
REST API

Agent CLI

Zoo
Keeper

ZOOKEEPER API

ZooKeeper
CLI

REST API

Console CLI

Script

S

Monday, July 11, 2011

glu Script

• A glu script is any code you want (groovy/java) made
easier by agent capabilities (but you don’t have to use
them!)

• shell.exec capability allow you to write your script
in any language you want (will be ‘promoted’ native
soon...)

Script

S

class RubyGluScript {
 def install = {
 shell.exec("./ruby/install.rb")
 }
 def start = {
 shell.exec("./ruby/start.rb")
 }
}

Monday, July 11, 2011

Agent

• One way to look at the agent: script engine remotely
accessible through a (secure) REST API

• => can also be used on its own (no ZooKeeper or
orchestration engine)

Agent

A
REST API

Monday, July 11, 2011

ZooKeeper

• ZooKeeper is independently accessible

• => can build your own listeners/watchers directly

• => use AgentsTracker library which comes with glu
(check the blog for more details)

• Ex: build a monitoring solution

Zoo
Keeper

ZOOKEEPER API

Monday, July 11, 2011

Orchestration Engine

• For example, you can integrate your CI directly with
glu by using the orchestration engine REST api (ex:
outbrain.com)

• Although very customizable, you can also build your
own UI if you do not like the one that comes with glu

REST API

Monday, July 11, 2011

Much more...

• Powerful tagging/filtering feature allow to create
concepts that glu does not know about (ex: webapp,
frontend, cluster, etc...)

• Query language allows you to slice & dice the models

• => build higher level constructs (like dynamic node
assignment)

Monday, July 11, 2011

glu vs puppet

✴ Disclaimer: I have spent 2 years with glu (I wrote it :-)) and 1 day with puppet...

Monday, July 11, 2011

glu vs puppet

• Great news: intrinsically similar concepts

• ‘desired’ vs ‘current’!

• declarative approach

• Minor difference:

• puppet is ruby vs glu is groovy/java

Monday, July 11, 2011

glu vs puppet: orchestration

• delta computation / orchestration takes place at a
different level

• => glu can orchestrate across nodes

• => glu delta is system wide (and real-time)

Agent Agent Agent

Master

puppet

vs

Real!Time
Feedback

Loop

glu

Zoo
Keeper

Monday, July 11, 2011

glu vs puppet: conclusion

• puppet is very good at configuring the infrastructure
of a machine (users, groups, packages, etc...)

• => static/stable does not change often

• glu is very good at provisioning dynamic applications
on an ensemble of machines (the system)

• => changes often, real-time failure detection
(monitoring), “bounce”, etc...

Monday, July 11, 2011

glu can use puppet :)

class PuppetGluScript {
 def puppetManifest

 def install = {
 // download manifest
 puppetManifest = shell.fetch(params.puppetManifestURI)
 }

 def start = {
 // execute manifest
 shell.exec("puppet apply ${puppetManifest}")
 }
}

Monday, July 11, 2011

References

Monday, July 11, 2011

References

• glu source: github.com/linkedin/glu (links to all you
need)

• blog: www.pongasoft.com/blog/yan

• twitter: @glutweets

Monday, July 11, 2011

http://www.pongasoft.com/blog/yan
http://www.pongasoft.com/blog/yan

